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A Gonźalez†, J A White† and R Evans‡
† Departamento de Fı́sica Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37008
Salamanca, Spain
‡ H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK

Received 28 November 1996

Abstract. A new density functional for the inhomogeneous hard-sphere fluid is proposed which
expresses the free-energy density in terms of a set of derivatives, with respect to the particle
radius, of a simple generating function. The three-dimensional version of the theory is used to
calculate density profiles for hard spheres near walls and to investigate the bulk fluidg(r), via
the test particle procedure. While the performance of the theory is generally poorer than that
of a related theory, the fundamental-measure approach of Rosenfeld, it is better than that of
approaches based on a single, density-independent weight function. Unlike earlier approaches,
the theory is remarkably successful at describing situations where the effective dimensionalityD
is reduced below three. More specifically the three-dimensional functional yields rather accurate
equations of state in theD = 1 andD = 2 limits and is exact for theD = 0 limit (a cavity that
cannot hold more than one particle). The strict one-dimensional version of the theory yields
the exact free-energy functional for hard rods whilst the free-energy functional forD = 2 is
equivalent to that obtained from the fundamental-measure approach. The extension of the theory
to hard-sphere mixtures is also described.

1. Introduction

The study of the equilibrium structure and thermodynamic properties of non-uniform fluids
has become a field of growing interest and evolution. A spatially varying average one-
particle densityρ(r), characteristic of a non-uniform fluid, may appear in many situations.
These can be associated with an external inhomogeneity such as occurs in adsorption and
wetting at substrate–fluid interfaces or in confined fluids [1–3]. Another example is the
interface between two coexisting bulk phases (liquid–vapour and liquid–liquid interface
[4]). A bulk solid may also be regarded as a highly inhomogeneous (symmetry-broken)
fluid (freezing) [5].

The reference model for classical fluids is the hard-sphere liquid inD dimensions since
it provides an excellent testing ground for any theory of the liquid state. This model is
also of practical importance because it can be considered as a zeroth-order approximation
in the statistical thermodynamics of an extensive variety of more realistic physical systems
with soft repulsive cores and attractive interactions, both of which can often be handled
perturbatively (e.g., Lennard-Jones fluids) or using more specific approximations (as in
studies of molten salts or liquid metals).

The introduction of density functional theories (DFT) of non-uniform hard-sphere fluids
is responsible for an appreciable part of the progress experienced in this field [1, 2, 4,
6–11]. The key aspect of a DFT is that the free energy of the fluid can be expressed
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as a unique functional of the densityρ(r). Once an explicit form for this functional is
given, all of the thermodynamic quantities of interest can be easily obtained. Moreover,
successive functional differentiation of the free-energy functional allows one to calculate
the distribution functions which describe the microscopic structure of the fluid. One of
the most important refinements in these theories has been the development of non-local
free-energy density functionals for hard spheres [1, 2, 6–11], in which a coarse-grained or
smoothed density is introduced in order tosmooththe local density, which can exhibit very
pronounced peaks in highly inhomogeneous situations such as adsorption of hard spheres
at a wall. The resulting smoothed density can then be used in a local free-energy function.

Among the large variety of theories based on a coarse-grained density, perhaps the
most successful one is the approximation derived by Rosenfeld [10, 12, 13], specifically
designed for hard-sphere mixtures, and based on geometric considerations. In this theory
one assumes that the excess free-energy density of the inhomogeneous fluid is a function
of a set of six weighted densities: the system-averagedfundamental geometric measures
of the particles [10, 12, 13], whose weights are functions characteristic of the geometry
of the particles. This description is intimately related to the scaled-particle theory (SPT)
[14, 15] for the homogeneous hard-sphere fluid, and thus one expects that in the uniform
limit it should reproduce the SPT results; in fact, in that limit one recovers not only the
SPT equation of state but also the Percus–Yevick (PY) (see, e.g., reference [16]) pair direct
correlation function (DCF)c(2)(r) [10, 13]. (Note that for the uniform hard-sphere fluid in
three dimensions, PY theory and SPT are equivalent theories.) This DFT has a number of
advantages over other theories. First, by construction it is well suited for mixtures. Second,
it gives excellent results for several different types of inhomogeneity. Third, it is easy to
implement from a computational point of view. And fourth, it permits ready calculation of
higher-order DCFs by functional differentiation of the excess free energy, and in particular,
the triplet DCF of the uniform hard-sphere fluid is in good agreement with Monte Carlo
simulations. Perhaps the most important drawback of this theory is its unsuitability for
describing the freezing transition or the adsorption of liquids at strongly attractive walls,
situations for which the oscillatory density profile becomes extremely peaked. The reason
for its failure to describe the solid phase has been attributed to its failure to describe properly
the zero-dimensional (0D) limit of a cavity that cannot hold more than one particle, and
a modification has been proposed [17] which imposes the correct limiting behaviour and
which does provide an accurate description of the hard-sphere freezing transition.

Based on the ideas of Rosenfeld, Kierlik and Rosinberg (KR) [11] introduced a
seemingly different DFT in which they postulated a free-energy density in terms of a set
of weighted densities. They assumed the functional form of the PY free-energy density
(whereas in the Rosenfeld case this functional form is derived from the theory) and obtained
the weight functions by fitting the uniform fluid pair DCF to the PY result. Although the
two theories have different weight functions the equivalence between the Rosenfeld and the
KR theories is now established [18].

In the present paper we propose a new DFT, which has its origins in the theories of
Rosenfeld, and Kierlik and Rosinberg but which contains ingredients of SPT and free-volume
theory. We present an approximation for the free energy of an inhomogeneous hard-sphere
fluid in terms of derivatives with respect to the particle radiusR of a functionG(ν(r, R))
which depends on a single weighted densityν(r, R) determined by a density-independent
weight function. In one dimension,D = 1, the theory, like that of Rosenfeld, yields the
exact (Percus [19]) free-energy functional for hard rods while forD = 2 it is equivalent
to Rosenfeld’s result for theD = 2 hard-disk functional [10, 12, 13]. ForD = 3 the new
functional, although not as accurate for density profiles and bulk correlations as the KR and
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Rosenfeld functionals, performs better than earlier weighted-density approximations based
on a single, density-independent weight function [2]. We show that when the approximate
three-dimensional functional is applied in limiting cases of extreme inhomogeneity the free
energy is given rather accurately for a wide range of packing fractions. In particular, our
functional yields the exact 0D limit, results close to the exact free energy in theD = 1
limit, and results comparable with those of Rosenfeld or KR in theD = 2 limit. Thus, we
argue that it should be well suited to tackling problems of extreme confinement, e.g. very
narrow pores, small cavities or quasi-two-dimensional adsorbed layers where the effective
dimensionality of the fluid is reduced below that of the bulk.

The paper is organized as follows. In section 2 we present the general structure of the
theory. We start with a summary of the theories of Rosenfeld and KR. The present theory is
then derived for the one-component three-dimensional hard-sphere fluid. Two different free-
energy density functionals are obtained, one based on the PY theory and the other based on
the Carnahan–Starling result for the free energy of the homogeneous hard-sphere fluid. In
order to analyse the nature of this DFT, the pair DCF for the homogeneous fluid is derived
and compared with the PY pair DCF. In section 3 several applications are considered and
results are compared with those of Rosenfeld and KR. More explicitly, we address various
cases of density profiles (adsorption) at walls, and we study the pair correlation function
g(r) of the homogeneous fluid obtained via the test particle method. Finally we obtain
the zero-, one- and two-dimensional limits of the three-dimensional theory and compare
the results for the free energy with other treatments. In section 4 the strict one- and two-
dimensional versions of the theory are presented. We conclude with a brief summary of the
results and their implications for DFT. In the appendix we extend the theory to mixtures of
hard spheres.

2. Theory

Since this new DFT relies heavily on the Rosenfeld or KR theories, we begin with a brief
account of these theories. More details can be found in the original papers [10, 11].

2.1. The theories of Rosenfeld and of Kierlik and Rosinberg

In both theories the excess contributionFex [{ρi}] to the free-energy functional of a mixture
of hard spheres is postulated to be of the form

βFex [{ρi}] = βF [{ρi}] − βFid [{ρi}] =
∫

dr 8[{nα(r)}] (2.1)

whereβ = 1/KBT , ρi(r) is the density of componenti, and

βFid [{ρi}] =
∑
i

∫
dr ρi(r)(log33

i ρi(r)− 1) (2.2)

is the ideal-gas contribution with the3is being the thermal de Broglie wavelengths of
componenti. In equation (2.1),β−18 is the excess free-energy density and it is expressed
as a function of a set of weighted densitiesnα(r) which are defined by

nα(r) =
∑
i

∫
ρi(r

′)ω(α)i (r − r′) dr′. (2.3)

The main differences between the Rosenfeld and KR theories arise in the functional forms
of 8 and the density-independent weight functionsω(α)i (r).
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2.1.1. The Rosenfeld theory.In the work of Rosenfeld [10] the six weight functions are
characteristic functions for the geometry of a three-dimensional sphere of radiusRi . They
are both scalar and vector quantities and are defined as

ω
(3)
i (r) = θ(Ri − r) (2.4)

ω
(2)
i (r) = δ(Ri − r) ω(2)i (r) =

r

r
δ(Ri − r) (2.5)

ω
(1)
i (r) =

ω
(2)
i (r)

4πRi
ω(1)i (r) =

ω(2)i (r)

4πRi
(2.6)

ω
(0)
i (r) =

ω
(2)
i (r)

4πR2
i

(2.7)

whereθ andδ are, respectively, the Heaviside step and the Dirac delta function. The excess
free-energy densityβ−18 is derived [10] as a sum of vector and scalar contributions:

8 = 8S +8V (2.8)

8S = −n0 log(1− n3)+ n1n2

1− n3
+ n3

2

24π(1− n3)2
(2.9)

8V = −n1 · n2

1− n3
− n2(n2 · n2)

8π(1− n3)2
(2.10)

where the dot denotes the scalar product. For a uniform hard-sphere mixture one has
ρi(r) = ρi , the integrals over the two vector weight functions vanish son1 = n2 = 0, and
the remaining four scalar functions yield the weighted densities

nα =
∑
i

ρiR
(α)
i (2.11)

where

R
(0)
i = 1 R

(1)
i = Ri R

(2)
i = 4πR2

i R
(3)
i =

4

3
πR3

i . (2.12)

The resulting8 = 8S is the scaled-particle theory or Percus–Yevick excess free-energy
density of the uniform hard-sphere mixture [10]. Note thatn3 is simply the packing fraction.

The direct correlation function is given by the second functional derivative of the excess
free-energy functional:

− c(2)(r1, r2) = β δ2Fex
δρ(r1) δρ(r2)

. (2.13)

In the uniform limit one has

−c(2)ij (r) = χ(3)1Vij (r)+ χ(2)1Sij (r)+ χ(1)1Rij (r)+ χ(0)θ((Ri + Rj)− r) (2.14)

where χ(α) = ∂28S/∂n3 ∂nα and 1Vij (r), 1Sij (r), and 1Rij (r) are functions of the
distancer between two spheres of radiusRi and Rj . These quantities are given by
geometrical measures [10]. Expression (2.14) coincides with the PY direct correlation
function for a three-dimensional hard-sphere mixture [10].

2.1.2. The Kierlik–Rosinberg theory.In the work of Kierlik and Rosinberg [11] the PY
form is postulated for the excess free-energy density:

8 = 8PY = −n0 log(1− n3)+ n1n2

1− n3
+ n3

2

24π(1− n3)2
(2.15)
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where again thenαs are averaged densities (2.3) but now with different weight functions
obtained by requiring that in the uniform limit the above functional gives rise to the PY
direct correlation function (2.14). Then KR obtained four scalar weight functions [11]:

ω
(3)
i (r) = θ(Ri − r) (2.16)

ω
(2)
i (r) = δ(Ri − r) (2.17)

ω
(1)
i (r) =

1

8π
δ′(Ri − r) (2.18)

ω
(0)
i (r) = −

1

8π
δ′′(Ri − r)+ 1

2πr
δ′(Ri − r) (2.19)

where the prime denotes differentiation w.r.t.r. Notice that in the uniform limit thenαs
arising from this theory are identical to those of the Rosenfeld theory.

2.2. Present theory

For the sake of clarity we present the theory for the case of a hard-sphere fluid with only
one component; the extension to mixtures is straightforward and is reported in the appendix.

2.2.1. The functional of the one-component fluid.In accordance with Rosenfeld and KR
we assume the following expression for the excess part of the free energyFex [ρ]:

βF [ρ] − βFid [ρ] = βFex [ρ] =
∫
8(r; ρ) dr (2.20)

where

Fid [ρ] = β−1
∫

dr ρ(r)(log33ρ(r)− 1) (2.21)

is again the free energy of the ideal gas. In the spirit of scaled-particle theory the excess
free-energy densityβ−18 is assumed to be of the form

8(r; ρ) = DRG(R; r; ρ) (2.22)

whereG is a dimensionless generating function which depends on the radiusR of the
particles and whose explicit functional form will be proposed later.DR is a differential
operator of orderD, whereD is the dimension of the system (D = 1, 2, or 3):

DR =
D∑
i=1

qi(R)
∂i

∂Ri
(2.23)

and theqi(R) are undetermined functions of the radiusR, with dimensionRi−D. The
simplest choice for these functions isqi(R) = aiRi−D, theais being dimensionless constants.
With this choice, we have

DR =
D∑
i=1

ai

RD−i
∂i

∂Ri
. (2.24)

Our proposal for the generating function is

G = (1− ν(r, R))(log(1− ν(r, R))− 1) (2.25)

whereν is a weighted density:

ν(r, R) =
∫

dr′ ρ(r − r′)ω(r′, R) (2.26)
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andω(r′, R) is a density-independent weight function which determines the dependence
on R. Following the Rosenfeld and KR theories and earlier approaches [2] we take the
simplest weight function:

ω(r′, R) = θ(R − r ′) (2.27)

so that forD = 3, ν(r, R) coincides with the average densityn3(r, R) which appears in
the Rosenfeld and KR theories.

The proposed form ofG is motivated by making comparison with the ideal-gas free-
energy density

fid(ρ(r)) = β−1ρ(r)(log(33ρ(r))− 1). (2.28)

Since in the uniform limitν reduces to the packing fractionη = (4/3)πR3ρ, which
represents the fraction of volume occupied by the molecules, for the inhomogeneous fluid
1− ν can be taken as the fraction of free volume. One then assumes thatG as a function
of 1− ν is just the free-energy density of the ideal gas. Going further with the analogy,
one could then consider the excess free-energy densityβ−1DRG as being the geometrical
contributions to the free-energy density of anideal ‘interstitial’ fluid with the packing
fraction given by 1−ν. Other choices ofG are possible but we first explore the consequences
of this simple prescription.

The next step is to determine appropriate values for the coefficientsai . To this end we
follow the usual procedure ofimposingthe known homogeneous limit, i.e., we choose the
ais in such a way that forρ(r) = ρ = constant,β−18 in (2.22) coincides with a known
excess free-energy density. ForD = 3 this can be carried out for the Percus–Yevick excess
free-energy density (the natural choice because of its equivalence to SPT) but also for the
more accurate Carnahan–Starling result [16].

From (2.22)–(2.25) we obtain

8 = DRG = −
(
a1

R2
ν ′ + a2

R
ν ′′ + a3ν

′′′
)

log(1− ν)

+
(
a2

R
(ν ′)2+ 3a3ν

′ν ′′
)

1

1− ν + a3(ν
′)3

1

(1− ν)2 (2.29)

where the prime denotes differentiation w.r.t.R. Equating term by term in (2.29) and in the
Percus–Yevick result (2.15) and taking into account thatν = n3, we obtain the following
set of equations:

n0 = a1

R2
ν ′ + a2

R
ν ′′ + a3ν

′′′

n1n2 = a2

R
(ν ′)2+ 3a3ν

′ν ′′

n3
2

24π
= a3(ν

′)3.

(2.30)

Given that in the homogeneous limit we have

n3 = 4

3
πR3ρ n2 = 4πR2ρ n1 = Rρ n0 = ρ (2.31)

and

ν = 4

3
πR3ρ ν ′ = 4πR2ρ ν ′′ = 8πRρ ν ′′′ = 8πρ (2.32)

it follows that in that limit (2.30) has the unique solution

a1 = 1

6π
a2 = 0 a3 = 1

24π
. (2.33)
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Substitution of (2.33) into (2.29) allows us to write

8 = −
(

1

6πR2
ν ′ + 1

24π
ν ′′′
)

log(1− ν)+ ν ′ν ′′

8π(1− ν) +
(ν ′)3

24π(1− ν)2 . (2.34)

On the other hand, from equations (2.26) and (2.27), and the definitions (2.3) for the
averaged densitiesnα, and (2.16)–(2.19) for the corresponding weight functionsω(α) in the
Kierlik–Rosinberg theory, it is easy to establish the following relations:

n3 = ν
n2 = ν ′

n1 = 1

8π
ν ′′

n0 = − 1

8π
ν ′′′ + 1

2π

(
ν ′

R

)′ (2.35)

that allow us to rewrite (2.34) as

8 =
(

1

3
n0− 4

3R
n1

)
log(1− n3)+ n1n2

1− n3
+ n3

2

24π(1− n3)2
. (2.36)

In this functional the only difference from8PY in (2.15) appears in the first term, this
difference vanishing in the homogeneous limit. The functional8 in equation (2.36) is our
proposal for the excess free-energy density forD = 3, and unless otherwise stated, it will
be the functional used in the calculations that we present later.

Proceeding in an analogous way we can obtain a functional that yields the Carnahan–
Starling free energy in the homogeneous limit. The starting point is the extension to mixtures
[20] of the C–S expression, written in terms of scaled-particle variables [11]:

8CS =
(

n3
2

36πn2
3

− n0

)
log(1− n3)+

(
n1n2+ n3

2

36πn3

)
1

1− n3
+ n3

2

36π(1− n3)2
. (2.37)

Note that the coefficient of the first log term vanishes for the uniform fluid. Now, equating
term by term in (2.29) and (2.37), the constantsai take the following values:

a1 = − 7

18π
a2 = 1

6π
a3 = 1

36π
(2.38)

giving the new functional

8 = −
( −7

18πR2
ν ′ + 1

6πR
ν ′′ + 1

36π
ν ′′′
)

log(1− ν)

+
(

1

6πR
(ν ′)2+ 1

12π
ν ′ν ′′

)
1

1− ν +
1

36π

(ν ′)3

(1− ν)2 (2.39)

or, in terms of thenαs given by (2.35)

8 = −
(
− 1

2πR2
n2+ 20

9R
n1− 2

9
n0

)
log(1− n3)

+
(

1

6πR
n2

2+
2

3
n1n2

)
1

1− n3
+ n3

2

36π(1− n3)2
(2.40)

which, as in the previous case, differs from8CS in (2.37) but agrees with it in the
homogeneous limit.
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Figure 1. The two-body direct correlation functionc(2)(r) of the homogeneous hard-sphere
fluid; (a) packing fractionη = 0.1 and (b)η = 0.46. The solid lines are the results of our theory
(2.45) and the dashed lines show the PY DCF (2.14).

2.2.2. The direct correlation function.In this section we study the structure of the uniform
fluid as obtained from the above theory, i.e., we shall compare the pair DCFc(2)(r) with
the PY pair DCF. From definition (2.13) and (2.20)–(2.25) we obtain

− c(2)(r1, r2) = DR

∫
1

1− ν(r, R)ω(r − r1, R)ω(r − r2, R) dr. (2.41)

For a homogeneous fluid bothc(2) andω depend only onrij = |ri − rj |, so the Fourier
transform of (2.41) reads

−c(2)(k) = DR

(
(ω(k, R))2

1− ν
)
. (2.42)

A simple calculation using theais in (2.33) allows us to write

− c(2)(k) = χ(3)1V (k)+ χ(2)1S(k)+ χ(1)1R(k)+ χ(0)θ̄ (k) (2.43)

with

θ̄ (k) = θ(k, 2R)+ θ(k, R)4

3

(
sin(kR)

kR
− cos(kR)− kR sin(kR)

)
(2.44)

and where theχ(α)s have the same meaning as in equation (2.14).1V (k), 1S(k), and
1R(k) are the Fourier transforms of the functions appearing in (2.14), andθ(k, R) is the
Fourier transform ofθ(R − r). Explicit expressions for these functions have been given
elsewhere [11]. Back in real space, from (2.43) and (2.44) we find

c(2)(r) = c(2)PY (r)+
2

3

1

1− η
r

σ
θ

(
1− r

σ

)
− 1

6

1

1− ηδ
(

1− r

σ

)
(2.45)

where c(2)PY (r) is the PY pair DCF (2.14) for a one-component homogeneous fluid and
σ = 2R is the hard-sphere diameter. The most remarkable (and unphysical) feature of
c(2)(r) in (2.45) is the presence of a Diracδ-function atr = σ . Figure 1 shows a comparison
between the PY pair DCF and the result (2.45) for two different densities. The agreement
between the results of the two theories is fairly good, especially at high densities. Notice
that c(2)(r) in (2.45) coincides withc(2)PY (r) for r = 0. This is related to the fact that the
two theories give rise to the same equation of state in the homogeneous limit—see (3.18)
and the discussion that follows.



Density functional theory for hard-sphere fluids 2383
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0
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Figure 2. The structure factorS(k) of a homogeneous hard-sphere fluid; (a) packing fraction
η = 0.1 and (b)η = 0.46. The solid lines are the results of our theory and the dashed lines
show the PY structure factor.

Figure 2 exhibits the structure factorS(k) = 1/(1 − ρc(2)(k)) for both theories and
the same two densities. As can be observed, a dephasing occurs, and the first peak is not
adequately described for the higher density in the present theory. This failing is due to the
large contribution from the second term in (2.44), reflecting the unphysical delta function.
Note thatc(2)(k = 0) andS(k = 0) coincide for the two theories, since they have the same
compressibility equation of state.

3. Applications

3.1. Adsorption at a wall

This is a prototypical problem for examining the performance of any theory of
inhomogeneous fluids. We investigate first the structure (density profile) of a one-component
hard-sphere fluid in contact with a hard wall. In this case the external potential is given by

Vext (r) = Vext (z) =
{
∞ z < 0

0 z > 0.
(3.1)

The minimization of the grand potential

�[ρ] = F [ρ] +
∫

dz ρ(z)[Vext (z)− µ]
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gives rise to the following expression for the density profile:

ρ(z) =
{
ρB exp[c(1)(z)− c(1)0 (ρB)] z > 0

0 z < 0
(3.2)

whereρB is the bulk density (the density of the fluid far away from the wall),c(1)(z) is
the first functional derivative of the excess free energy, andc

(1)
0 is its homogeneous limit

(ρ(z)→ ρB). For our particular functional

c(1)(r) = −β δFex
δρ(r)

= −
∫ ∑

α

∂8

∂nα
ω(α)(r′ − r) dr′ (3.3)

where8 is given by (2.36) and the weightsω(α) come from the KR theory (2.16)–(2.19)
restricted to a one-component fluid. By definingSα(z) ≡

∫
8αω

(α)(r′ − r) dr′, with
8α = ∂8/∂nα, we have

c(1)(z) = −
∑
α

Sα(z) (3.4)

where theSαs can be rewritten in the following simplified form:

S3(z) = π
∫ R

−R
83(z + z′)[R2− z′2] dz′

S2(z) = 2πR
∫ R

−R
82(z + z′) dz′

S1(z) = R

4
(81(z + R)+81(z − R))+ 1

4

∫ R

−R
81(z + z′) dz′

S0(z) = 1

2
(80(z + R)+80(z − R))− R

4
(8′0(z + R)−8′0(z − R))

(3.5)

and the weighted densities can be written as in KR theory [11]. The termc
(1)
0 (ρB) is easily

expressed as

c
(1)
0 (ρB) = −

∑
α

8α({nβ = ρBR(β)})R(α) (3.6)

whereR(0) = 1, R(1) = R, R(2) = 4πR2, andR(3) = (4/3)πR3.
Equation (3.2) for the profileρ(z) is readily solved by iteration. Figure 3 shows a

comparison between the solution of equation (3.2) and the result of the KR theory (equivalent
to that of Rosenfeld) which is known to give very accurate results for the present problem
[11, 2]. The solutions are plotted for different bulk densities, and are in better agreement
as the density decreases. The most striking feature of the solutions obtained from the new
theory is the appearance of akink at z = σ (and discontinuities in higher derivatives at
z = 2σ , 3σ , . . .) which can be traced back to the delta function term in the DCF (2.45).
The delta function contributionpropagatesthe discontinuity in the profile atz = 0 to z = σ
in the form of a discontinuity in the first derivative ofρ(z) (the kink). Although this
unphysical kink is the main difference between the theories, there is also some dephasing
of the maxima.

It should be mentioned that the present theory obeys the contact sum rule for a fluid
near a hard wall:

βP = ρ(contact). (3.7)

This sum rule is satisfied by any (non-local) DFT. In this case (as in the Rosenfeld or KR
theories) the bulk pressureP is that given from the compressibility PY equation of state.
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Figure 3. Density profiles for a hard-sphere fluid near a planar hard wall; (a) bulk packing
fraction ηB = 0.05, (b) ηB = 0.15, (c) ηB = 0.30, and (d)ηB = 0.46. The solid lines are the
results of our theory and the dashed lines are those of the KR theory.
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Figure 4. Density profiles of hard spheres near a Lennard–Jones 9–3 wall; (a)ηB = 0.244,
ε/kB = 2876 K, z0 = 0.562σ , T = 150 K, and (b)ηB = 0.32, ε/kB = 2876 K, z0 = 0.562σ ,
T = 100 K. The points are the Monte Carlo results of reference [21], the solid lines are the
results of the present theory, and the dashed lines are those of the KR theory [11].

Kierlik and Rosinberg [11] applied their approach to the very inhomogeneous case of a
hard-sphere fluid near a Lennard-Jones wall with the potential given by

Vext (z) = ε
((

z0

z

)9

−
(
z0

z

)3)
. (3.8)
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Figure 4 shows a comparison between Monte Carlo and KR results, and the results of the
present theory for two different bulk states. In general the KR theory is accurate except
in case (b), a high-density, low-temperature state where it cannot reproduce adequately the
extremely high first peak of the profile. The new theory gives results similar to those
of KR but with poorer agreement with simulations which again can be related to the
delta function term in the DCF (2.45). In this case the wall potential is soft, there is
no discontinuity at contact, and the kink is smoothed. Notice that the kink appears at a
distance of approximatelyσ from the main peak. Once again there seems to be significant
dephasing of the maxima.

3.2. The radial distribution functiong(r) of a homogeneous hard-sphere fluid from the test
particle method

The test particle method is based on an idea of Percus [22] which allows one to study the
structure of the homogeneous fluid using theories for inhomogeneous liquids. The idea is
to consider one of the particles as fixed at the origin, thereby creating an inhomogeneity in
the one-body density profile. The resulting density profileρ(r) is then related to the radial
distribution functiong(r) of the homogeneous fluid by the following relation:

ρ(r) = ρBg(r). (3.9)

From this viewpoint we consider a fluid in an external potential equal to the intermolecular
potential (created by the particle at the origin). For hard spheres this potential is given by

Vext (r) = Vext (r) =
{
∞ r < 2R

0 r > 2R.
(3.10)

Since this potential has spherical symmetry, the resulting density profile will also have
spherical symmetry. In this case, the convolutions defining the weighted densities (and those
convolutions appearing inc(1)(r)) can be easily handled by Fourier transform methods by
noticing that all of the Fourier transforms (FT) involved can be reduced to one-dimensional
FTs on the radial coordinater. The calculations can then be done using a fast-Fourier-
transform (FFT) procedure. This method can also be implemented in the previous case of
adsorption at a wall.

Figure 5 shows a comparison between the results obtained from KR theory (or
equivalently, from the Rosenfeld theory) and from the present theory for several bulk
densities. In general, the behaviour is similar to that found in the case of adsorption at
a wall. g(r) is characterized by the appearance of a kink forr = 2σ (and discontinuities
in higher derivatives forr = 3σ, 4σ, . . .), i.e., at a distanceσ from the contact. This kink
is enhanced as the density is increased and can be traced back to the delta function term in
the DCF.

The reason for comparing with the KR theory is that we know that this provides accurate
results for the radial distribution function. This can be ascertained in figure 6 where we plot
our results forg(r) for η = 0.46 from KR theory using the test particle method and the PY
result obtained as usual from the PY pair DCF through the Ornstein–Zernike equation. Since
the PY pair DCF is also the KR DCF, figure 6 illustrates the great degree of consistency of
the KR theory. The main differences between the results from the test particle method and
the inversion of the Ornstein–Zernike equation appear at or close to the contact, where the
test particle result is closer to the simulation result.

As in the wall–particle problem, in the test particle case there is an exact sum rule
linking the contact value of the profileg(σ ) with the equation of state of the hard-sphere
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Figure 5. Pair correlation functionsg(r) of the homogeneous hard-sphere fluid obtained from
the test particle method; (a) bulk packing fractionηB = 0.1, (b) ηB = 0.2, (c) ηB = 0.3, and
(d) ηB = 0.46. The solid lines are the predictions of the present theory and the dashed lines are
those of the KR theory.
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Figure 6. The pair correlation functiong(r) for the homogeneous hard-sphere fluid at a packing
fractionηB = 0.46. The solid line is the result of the KR theory obtained using the test particle
method. The dashed line is the PYg(r).

fluid. This is the virial equation of state [16]:

βP

ρ
= 1+ 2

3
πρσ 3g(σ ). (3.11)

However, for this problem our theory yields contact values different from the KR theory
(see figure 5). This observation is related to the fact that the DCFs of the two theories are
different. Nevertheless, as can be seen in figure 7, the contact values obtained in our theory,
when used in equation (3.11), give rise to pressuresP (equations of state) in remarkable
agreement with the corresponding homogeneous fluid equations of state. More precisely,
in figure 7 we compare the test particle results from our theory using8 from equation
(2.36) (�) with the PY compressibility equation of state (solid line) and find that these
are very close. We also compare the test particle results from our theory with8 derived
from the Carnahan–Starling free energy (2.40) (+) with the accurate Carnahan–Starling
equation of state (dashed line). Again these are very close. In this context we mention that
replacement of8 from equation (2.36) (coming from PY theory) by8 from equation (2.40)
(coming from Carnahan–Starling theory) gives rise to density profilesρ(z) or g(r) that are
almost identical except for the values near the contact which are much more accurate in the
Carnahan–Starling case.

3.3. Very inhomogeneous situations

In this subsection we consider the zero-, one-, and two-dimensional limits of the three-
dimensional theory. If a theory based on a full three-dimensional functional can provide
an accurate account of results for lower dimensions, it should, in principle, be able to deal
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Figure 7. The equation of state for a hard-sphere fluid plotted as a function of packing fraction
ηB . The solid line is the PY compressibility equation of state, the dashed line is the Carnahan–
Starling equation of state;♦: the results of this theory (using the test particle method and the
virial equation (3.11)) in the PY version, and+: this theory in the Carnahan–Starling version.

with highly inhomogeneous situations in which the effective dimension of the problem is
reduced. For example, if we consider adsorption at very attractive walls, the first layer of
molecules behaves as a near-two-dimensional fluid.

3.3.1. The zero-dimensional limit.In a recent paper [17] Rosenfeldet al have proposed
a modified geometrically based free-energy functional for hard spheres. In that work the
authors analyse a situation of extreme confinement in which one considers cavities that
cannot hold more than one particle. This is the 0D limit. The modified free-energy
functional is constructed in such a way that it recovers the exact excess free energy for
this situation. This is given by [17]

βFex(η) = η + (1− η) log(1− η) (3.12)

where the 0D packing fractionη represents the average occupation of the cavity (06 η 6 1).
We note that the exact 0D excess free energy (3.12) is essentially our generating function
G (see (2.25)) expressed in terms of the average occupationη. More specifically,
βFex(η) = G(η) + 1. Thus, one might argue that our present theory is constructed so
that the exact 0D limit is achieved. This was not how we came to our approximation,
however; rather it was motivated by the simple free-volume ideas described earlier. As
such, our approach is in a somewhat different spirit from the very recent work of Tarazona
and Rosenfeld [23], which presents an elegant derivation of fundamental-measure-theory
functionals based on the exact 0D free energy. Note that the original Rosenfeld theory does
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not recover the correct 0D limit; rather it leads to a divergence. As we shall see below, a
remarkable property of our theory is that it yields the above exact 0D excess free energy
when we consider the (PY-fitted) functional (2.29) with coefficients (2.33).

The density in the 0D limit isρ(r) = ηδ(r), and therefore

ν(r) = η
∫
δ(r′)θ(R − |r − r′|) dr′ = ηθ(R − |r|). (3.13)

From (2.20) and (2.22) one has

βFex = DR

∫
G(ν) dr (3.14)

and then, using (3.13), one can divide
∫
G(ν) dr into two parts, one inside the sphere

r = R for which G(ν) = G(η) = constant and the other outside this sphere for which
G(ν) = G(0) = −1. Sinceη (the average occupation) is independent ofR in 0D we find

βFex(η) = DR((−1)(V − V3(R))+G(η)V3(R)) = (1+G(η))DR(V3(R)) (3.15)

whereV is the volume of the system (V = ∫ dr) andV3(R) = (4/3)πR3 is the volume of
a sphere of radiusR. From (2.25), equation (3.15) is the exact result (3.12) provided that

DR(V3(R)) = 1. (3.16)

Considering the general expression forDR (2.24), condition (3.16) requires that

4π(a1+ 2a2+ 2a3) = 1 (3.17)

and this is fulfilled by the set (2.33), i.e. the set which in the homogeneous limit recovers
the PY free energy from our functional. Surprisingly, using the set (2.38) that gives the
Carnahan–Starling version of our theory we obtainDR(V3(R)) = 0, i.e. we do not recover
the correct 0D limit. This indicates that our theory is intimately linked to the PY (or SPT)
structure. This feature is also present if one considers the following relation:

−c(2)(r = 0)+ ρc(2)(k = 0) = DR(V3(R)) (3.18)

which is valid for the homogeneous fluid DCF in the framework of our theory. It can
be derived by recognizing that equation (2.42) yields−ρ2c(2)(k = 0) = DR(η

2/(1− η)
(note thatη/ρ = (4/3)πR3) and equation (2.41) implies−ρc(2)(r = 0) = DR(η/(1− η)).
Expression (3.18) reduces to−c(2)(r = 0) + ρc(2)(k = 0) = 1 for the PY version of
our theory. This last result is a well-known requirement on the PY pair DCF; it is easily
obtained from the Ornstein–Zernike relation, noting thatc(2)(r) = 0 for r > σ andg(r) = 0
for r < σ .

It is important to note that (3.18) generalizes to other dimensionsD. The derivation
sketched above yields, for allD,

−c(2)(r = 0)+ ρc(2)(k = 0) = DR

(
η

ρ

)
(3.19)

where η is the appropriate packing fraction andDR is the operator appropriate to the
particular dimensionD. In section 4 we show that the r.h.s. of (3.19) reduces to unity for
D = 1 andD = 2 as well as forD = 3.
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3.3.2. The one-dimensional limit.In this case the particles are restricted to the line
(x = y = 0) and the density profile can be written as

ρ(r) = ρz(z)δ(x)δ(y) (3.20)

and thus

ν(r) =
∫
ρz(z

′)δ(x ′)δ(y ′)θ(R − |r − r′|) dr′ = θ(R − %)
∫ z+l

z−l
ρz(z

′) dz′ (3.21)

where %2 = x2 + y2 and l2 = R2 − %2. In order to derive the corresponding excess
free energy we use again equation (3.14). The integral in (3.14) can be evaluated taking
into account the cylindrical symmetry ofν(r) and the fact that for% > R, ν = 0 and
G(ν = 0) = −1. We find∫

G(ν) dr = 2π
∫

dz
∫ R

0
G(ν)% d% + πLR2− V (3.22)

where againV is the volume of the system andL is its length (L = ∫ dz).
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Figure 8. The excess free energy of a uniform one-dimensional hard-rod fluid. The solid line
is obtained from the one-dimensional limit of the present three-dimensional functional. The
dashed line corresponds to the exact solution. In the inset we show the results for low densities.
η is the 1D packing fraction.

Using the PY coefficients (2.33) it follows that

DR = 1

6πR2

∂

∂R
+ 1

24π

∂3

∂R3
(3.23)
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and from (3.14) and (3.22) we obtain

βFex = L

3R
+ 1

3R

∫
G(ν̄) dz − 1

6

∫
(ρz(z + R)+ ρz(z − R)) log(1− ν̄) dz

− R

12

∫
(ρ ′z(z + R)− ρ ′z(z − R)) log(1− ν̄) dz

+ R

12

∫
(ρz(z + R)+ ρz(z − R))2

1− ν̄ dz (3.24)

where

ν̄(z) = ν(x = 0, y = 0, z) =
∫ z+R

z−R
ρz(z

′) dz′. (3.25)

For a uniform fluid the density is constant:ρz(z) = ρz = N/L and ν̄(z) = 2Rρz, giving

βFex(ρz)
Lρz

= − log(1− 2Rρz)+ 1

3Rρz
log(1− 2Rρz)+ 2

3
+ Rρz

3(1− 2Rρz)
. (3.26)

The first term in the above equation is the exact free energy for the homogeneous hard-rod
fluid [19]. The remaining terms constitute, therefore, deviations of the present approximation
from the exact result. In general, up to a packing fraction ofη ≡ 2Rρz ≈ 0.8, the deviations
are small (see figure 8). The theory does not predict the correct second virial coefficient
as can be deduced from (3.26) (or see the inset in figure 8). Moreover the free energy
diverges faster atη = 1 than the exact result. We stress, however, that we are dealing with
a highly inhomogeneous problem for which very versatile theories such as the weighted-
density approximation of Tarazona [8] and of Rosenfeld [13] fail. For example, in the
original Rosenfeld theory there are non-integrable singularities in the calculation of the 1D
free energy [13, 24]. The modified version of Rosenfeldet al [17] removes the singularities
and yields free energies which are of a similar accuracy to those obtained from our present
theory.

3.3.3. The two-dimensional limit.Now the particles are restricted to the planez = 0 and
the density is given by

ρ(r) = ρ2(x, y)δ(z). (3.27)

Proceeding in the same manner as in the previous case we obtain in the uniform limit
(ρ2(x, y) = ρ2 = N/A) the following expression for the free energy:

βFex
Aρ2

= −2

3
logη − 1

3

∫ 1

−1
log(a2+ ζ 2) dζ + η

3
+ 1

2

∫ 1

−1

dζ

a2+ ζ 2
+ 1

3

∫ 1

−1

dζ

(a2+ ζ 2)2

(3.28)

whereA = ∫
dx dy, the two-dimensional packing fraction isη = ρ2πR

2, ζ = z/R, and
a = ((1− η)/η)1/2. This result should be compared with the two-dimensional limit of the
KR or Rosenfeld theory [24, 13]:

βFKRex
Aρ2

= η + 1

2

∫ 1

−1

dζ

a2+ ζ 2
+ 1

3

∫ 1

−1

dζ

(a2+ ζ 2)2
(3.29)

and with the accurate result of the scaled-particle theory (SPT) forD = 2 [15]:

βFSPTex

Aρ2
= η

1− η − log(1− η). (3.30)

Figure 9 shows the three cases. Our result is very close to that of KR except for at low
densities (see the inset) where KR theory is in better agreement with SPT.
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Figure 9. The excess free energy of a uniform two-dimensional hard-disk fluid. The solid line
is obtained from the two-dimensional limit of the present three-dimensional functional. The
dashed line corresponds to the same limit of the Rosenfeld (or KR) theory. The dotted line
represents thenear exactSPT result [15]. In the inset we show the results for low densities.η

is the 2D packing fraction.

4. Theory in dimensions one and two

In this section we derive the one- and two-dimensional versions of the present theory,
following the procedure employed for the three-dimensional case.

4.1. Dimension one

For D = 1 the weighting function isω(r) = θ(R − |r|) where|r| is the absolute value of
the one-dimensional variabler andDR = a1 ∂/∂R. Then

8 = −a1ν
′ log(1− ν) (4.1)

which in the uniform limit takes the value

8 = −2a1ρ log(1− η) (4.2)

where nowη = 2Rρ is the one-dimensional packing fraction. Equating with the exact result
8exact= −ρ log(1− η) we obtaina1 = 1/2, which inserted in (4.1) gives rise to

βFex = −1

2

∫
(ρ(r + R)+ ρ(r − R)) log

(
1−

∫ r+R

r−R
ρ(r ′) dr ′

)
dr (4.3)

and this is the exact free-energy functional for the one-dimensional inhomogeneous hard-
rod fluid [2, 19]. Note that forD = 1, DR(η/ρ) = 2a1 = 1, so (3.19) reduces to
−c(2)(r = 0)+ ρc(2)(k = 0) = 1. This relation is exact forD = 1.
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4.2. Dimension two

Applying the two-dimensional version ofDR:

DR = a1

R

∂

∂R
+ a2

∂2

∂R2
(4.4)

to G = (1− ν)(log(1− ν)− 1) we obtain

8 = −
(
a1ν
′

R
+ a2ν

′′
)

log(1− ν)+ a2
(ν ′)2

1− ν . (4.5)

In the uniform limit (4.5) reads

8 = −2πρ(a1+ a2) log(1− η)+ a2
(2πRρ)2

1− η (4.6)

whereη = πR2ρ is the two-dimensional packing fraction. Equating (4.6) with the SPT
free-energy density for two dimensions (3.30), re-expressed as

8SPT = ρ2 πR
2

1− η − ρ log(1− η) (4.7)

we obtaina1 = a2 = 1/4π . The functional (4.5) can then be expressed in the form

8 = −n0 log(1− n2)+ 1

4π

(n1)
2

1− n2
(4.8)

whereni(r) =
∫

dr′ ω(i)(|r − r′|)ρ(r′) and we have defined the weightsω(i) as

ω(2)(r) = 2(R − r)
ω(1)(r) = δ(R − r)

ω(0)(r) = 1

4π

(
1

R
δ(R − r)+ δ′(R − r)

)
.

(4.9)

The two-dimensional functional (4.8) with the scalar weight functions (4.9) can be viewed
as the two-dimensional version of the KR theory. Note however that there is only one
weight function (2.27)—the structure of thisD = 2 theory is the same as forD = 3—and
theω(i) (4.9) are simply derivatives of this one. This is somewhat different from the genesis
of the weight functions in Rosenfeld’s theory.

Nevertheless we now show that8 given by (4.8) is completely equivalent to the
Rosenfeld functional in two dimensions [12, 13]:

8̂ = −n̂0 log(1− n̂2)+ 1

4π

n̂2
1

1− n̂2
− 1

4π

n̂1 · n̂1

1− n̂2
(4.10)

where then̂is are again given bŷni(r) =
∫

dr′ ω̂(i)(r − r′)ρ(r′) with theD = 2 set of
weights

ω̂(2)(r) = 2(R − r)
ω̂(1)(r) = |∇2(R − r)| = δ(R − r)
ω̂(1)(r) = −∇2(R − r) = r

r
δ(R − r)

ω̂(0)(r) = 1

2πR
ω̂(1)(r) = 1

2πR
δ(R − r).

(4.11)
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The demonstration of the equivalence of the two theories is very similar to the one used
by Phanet al [18] to establish the equivalence of the KR and Rosenfeld theories in three
dimensions. Let us consider the difference∫

dr (8̂−8) =
∫

dr

(
−(n̂0− n0) log(1− n2)− 1

4π

n̂1 · n̂1

1− n2

)
(4.12)

in which the identitiesn̂1 = n1 and n̂2 = n2 have been applied. Also, sincên1 = −∇n2

one has∫
dr
n̂1 · n̂1

1− n2
=
∫

dr n̂1 · ∇ log(1− n2) = −
∫

dr ∇ · n̂1 log(1− n2) (4.13)

where we have performed an integration by parts, neglecting the surface terms. We get
therefore ∫

dr (8̂−8) =
∫

dr

(
−(n̂0− n0)+ 1

4π
∇ · n̂1

)
log(1− n2). (4.14)

This expression vanishes provided that−(n̂0 − n0) + (1/4π)∇ · n̂1 = 0 , and this can be
verified by noticing that

−(ω̂(0) − ω(0))+ 1

4π
∇ · ω̂(1) = 1

4π

(
−ω

(1)

R
+ ω(1)′ +∇ · ω̂(1)

)
= 1

4π

(
−δ(R − r)

R
+ δ′(R − r)+∇ · r̂δ(R − r)+ r̂ · ∇δ(R − r)

)
(4.15)

wherer̂ = r/r and equations (4.9) and (4.11) have been used. Recalling that∇ · r̂ = 1/r
for D = 2, it is straightforward to see that this expression vanishes on integration. Finally
we note that forD = 2, DR(η/ρ) = 2π(a1 + a2) = 1 and, once more, equation (3.19)
reduces to−c(2)(r = 0)+ ρc(2)(k = 0) = 1.

5. Conclusions

We have proposed a new density functional for the inhomogeneous hard-sphere fluid which
is close in spirit to the theories of Rosenfeld [10] and of Kierlik and Rosinberg [11] but
which employs a simpleansatz(2.22) for the excess free-energy density. The assumption
is that the latter can be written as a set of derivatives of a generating functionG w.r.t. the
particle radiusR. Our choice ofG was motivated by simple free-volume considerations
and involves a single weighted densityν(r, R). In contrast to the Rosenfeld and KR
theories whose structure is, in some sense, predetermined by that of PY theory or SPT for
the hard-sphere system, our approach builds in some flexibility. It is designed so that the
coefficients of the differential operator can be fitted to different uniform fluid free-energy
densities. The results presented here are obtained by fitting to the PY free energy, in order to
effect a fair comparison with the Rosenfeld and KR theories. The application of our theory
with coefficients determined by the Carnahan–Starling free energy (see (2.40) and above)
gives rise to almost identical results for density profiles and forg(r) but with significant
improvement near the contact.

In applications to three-dimensional problems (density profiles at walls or the calculation
of g(r) from the test particle procedure) our new functional is generally less accurate than the
Rosenfeld or KR functionals. However, it does fare somewhat better than other functionals
based on a single density-independent weight function, which suggests that the generating
procedure does contain some of the essential physics. We have traced the failings of our
theory to the fact that it does not generate an adequate pair DCF for the uniform fluid.
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There is an unphysical delta function term atr = σ which is responsible for the appearance
of a kink at z = σ in the density profile at a hard wall and a similar kink ing(r) at
r = 2σ . These kinks are not present in the results of more sophisticated approximations
or in simulations. Such observations reinforce the conjecture [2] that for a DFT to give an
accurate description of the density profile of the inhomogeneous fluid it should generate an
accurate pair DCF in the uniform case.

The main strength of our present theory lies in its ability to describe successfully limiting
cases of extreme inhomogeneity. The three-dimensional functional yields equations of state
for one- and two-dimensional systems that are comparable in accuracy to those from the
latest modification [17] of Rosenfeld’s fundamental-measure theory. Given that it also yields
the exact 0D limit (a demanding test [17]) this suggests that the present functional could
find useful applications in problems of extreme confinement. These are currently under
investigation.

At the risk of losing the overall simplicity of the theory, modifications could be made
by introducing other generating functions, i.e. modifying the ideal-gas form in (2.25). It
remains to be seen what the consequences of such modifications will be and whether these
will lead to improved pair DCFs and density profiles forD = 3.
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Appendix

In this appendix we extend the theory formulated in section 2 for a one-component fluid to
the general case of fluid mixtures. We assume an excess free-energy densityβ−18 of the
form

8(r; {ρi}) = DRG(r; {ρi, Ri}) (A.1)

whereρi andRi are, respectively, the density and the radius of componenti of the mixture.
Also, for dimensionD = 3, we define

DR = k1

∑
i

1

R2
i

∂

∂Ri
+ k2

∑
i

1

Ri

∂

∂Ri

(∑
j

∂

∂Rj

)
+ k3

∑
i

∂

∂Ri

(∑
j

∂

∂Rj

(∑
k

∂

∂Rk

))
(A.2)

and

G = (1− ν(r; {ρi, Ri}))(log(1− ν(r; {ρi, Ri}))− 1) (A.3)

whereν is a weighted density

ν(r; {ρi, Ri}) =
∑
i

∫
ρ(r − r′)ω(r′, Ri) dr′ (A.4)

and

ω(r′, Ri) = θ(Ri − r ′). (A.5)
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Performing the differentiation indicated in the above equations and comparing term by term
with the PY functional in the homogeneous fluid limit, we find

k1 = 1

6π
k2 = 0 k3 = 1

24π
(A.6)

which coincides with the result for the one-component fluid.
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