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Abstract. A new density functional for the inhomogeneous hard-sphere fluid is proposed which
expresses the free-energy density in terms of a set of derivatives, with respect to the particle
radius, of a simple generating function. The three-dimensional version of the theory is used to
calculate density profiles for hard spheres near walls and to investigate the bulk@tyidsia

the test particle procedure. While the performance of the theory is generally poorer than that
of a related theory, the fundamental-measure approach of Rosenfeld, it is better than that of
approaches based on a single, density-independent weight function. Unlike earlier approaches,
the theory is remarkably successful at describing situations where the effective dimensibnality

is reduced below three. More specifically the three-dimensional functional yields rather accurate
equations of state in thH® = 1 andD = 2 limits and is exact for th® = 0 limit (a cavity that

cannot hold more than one particle). The strict one-dimensional version of the theory yields
the exact free-energy functional for hard rods whilst the free-energy functiondb fer 2 is
equivalent to that obtained from the fundamental-measure approach. The extension of the theory
to hard-sphere mixtures is also described.

1. Introduction

The study of the equilibrium structure and thermodynamic properties of non-uniform fluids
has become a field of growing interest and evolution. A spatially varying average one-
particle densityp(r), characteristic of a non-uniform fluid, may appear in many situations.
These can be associated with an external inhomogeneity such as occurs in adsorption and
wetting at substrate—fluid interfaces or in confined fluids [1-3]. Another example is the
interface between two coexisting bulk phases (liquid—vapour and liquid—liquid interface
[4]). A bulk solid may also be regarded as a highly inhomogeneous (symmetry-broken)
fluid (freezing) [5].

The reference model for classical fluids is the hard-sphere liquid dimensions since
it provides an excellent testing ground for any theory of the liquid state. This model is
also of practical importance because it can be considered as a zeroth-order approximation
in the statistical thermodynamics of an extensive variety of more realistic physical systems
with soft repulsive cores and attractive interactions, both of which can often be handled
perturbatively (e.g., Lennard-Jones fluids) or using more specific approximations (as in
studies of molten salts or liquid metals).

The introduction of density functional theories (DFT) of non-uniform hard-sphere fluids
is responsible for an appreciable part of the progress experienced in this field [1, 2, 4,
6-11]. The key aspect of a DFT is that the free energy of the fluid can be expressed
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as a unique functional of the densip(r). Once an explicit form for this functional is
given, all of the thermodynamic quantities of interest can be easily obtained. Moreover,
successive functional differentiation of the free-energy functional allows one to calculate
the distribution functions which describe the microscopic structure of the fluid. One of
the most important refinements in these theories has been the development of non-local
free-energy density functionals for hard spheres [1, 2, 6-11], in which a coarse-grained or
smoothed density is introduced in ordersimooththe local density, which can exhibit very
pronounced peaks in highly inhomogeneous situations such as adsorption of hard spheres
at a wall. The resulting smoothed density can then be used in a local free-energy function.

Among the large variety of theories based on a coarse-grained density, perhaps the
most successful one is the approximation derived by Rosenfeld [10, 12, 13], specifically
designed for hard-sphere mixtures, and based on geometric considerations. In this theory
one assumes that the excess free-energy density of the inhomogeneous fluid is a function
of a set of six weighted densities: the system-averdgedamental geometric measures
of the particles [10, 12, 13], whose weights are functions characteristic of the geometry
of the particles. This description is intimately related to the scaled-particle theory (SPT)
[14, 15] for the homogeneous hard-sphere fluid, and thus one expects that in the uniform
limit it should reproduce the SPT results; in fact, in that limit one recovers not only the
SPT equation of state but also the Percus—Yevick (PY) (see, e.g., reference [16]) pair direct
correlation function (DCF}®@(r) [10, 13]. (Note that for the uniform hard-sphere fluid in
three dimensions, PY theory and SPT are equivalent theories.) This DFT has a number of
advantages over other theories. First, by construction it is well suited for mixtures. Second,
it gives excellent results for several different types of inhomogeneity. Third, it is easy to
implement from a computational point of view. And fourth, it permits ready calculation of
higher-order DCFs by functional differentiation of the excess free energy, and in particular,
the triplet DCF of the uniform hard-sphere fluid is in good agreement with Monte Carlo
simulations. Perhaps the most important drawback of this theory is its unsuitability for
describing the freezing transition or the adsorption of liquids at strongly attractive walls,
situations for which the oscillatory density profile becomes extremely peaked. The reason
for its failure to describe the solid phase has been attributed to its failure to describe properly
the zero-dimensional (OD) limit of a cavity that cannot hold more than one particle, and
a modification has been proposed [17] which imposes the correct limiting behaviour and
which does provide an accurate description of the hard-sphere freezing transition.

Based on the ideas of Rosenfeld, Kierlik and Rosinberg (KR) [11] introduced a
seemingly different DFT in which they postulated a free-energy density in terms of a set
of weighted densities. They assumed the functional form of the PY free-energy density
(whereas in the Rosenfeld case this functional form is derived from the theory) and obtained
the weight functions by fitting the uniform fluid pair DCF to the PY result. Although the
two theories have different weight functions the equivalence between the Rosenfeld and the
KR theories is now established [18].

In the present paper we propose a new DFT, which has its origins in the theories of
Rosenfeld, and Kierlik and Rosinberg but which contains ingredients of SPT and free-volume
theory. We present an approximation for the free energy of an inhomogeneous hard-sphere
fluid in terms of derivatives with respect to the particle radkusf a functionG (v(r, R))
which depends on a single weighted density, R) determined by a density-independent
weight function. In one dimensior) = 1, the theory, like that of Rosenfeld, yields the
exact (Percus [19]) free-energy functional for hard rods whileTfoe= 2 it is equivalent
to Rosenfeld’s result for th® = 2 hard-disk functional [10, 12, 13]. Fdp = 3 the new
functional, although not as accurate for density profiles and bulk correlations as the KR and
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Rosenfeld functionals, performs better than earlier weighted-density approximations based
on a single, density-independent weight function [2]. We show that when the approximate

three-dimensional functional is applied in limiting cases of extreme inhomogeneity the free

energy is given rather accurately for a wide range of packing fractions. In particular, our

functional yields the exact 0D limit, results close to the exact free energy iDthe 1

limit, and results comparable with those of Rosenfeld or KR inhe: 2 limit. Thus, we

argue that it should be well suited to tackling problems of extreme confinement, e.g. very

narrow pores, small cavities or quasi-two-dimensional adsorbed layers where the effective
dimensionality of the fluid is reduced below that of the bulk.

The paper is organized as follows. In section 2 we present the general structure of the
theory. We start with a summary of the theories of Rosenfeld and KR. The present theory is
then derived for the one-component three-dimensional hard-sphere fluid. Two different free-
energy density functionals are obtained, one based on the PY theory and the other based on
the Carnahan—Starling result for the free energy of the homogeneous hard-sphere fluid. In
order to analyse the nature of this DFT, the pair DCF for the homogeneous fluid is derived
and compared with the PY pair DCF. In section 3 several applications are considered and
results are compared with those of Rosenfeld and KR. More explicitly, we address various
cases of density profiles (adsorption) at walls, and we study the pair correlation function
g(r) of the homogeneous fluid obtained via the test particle method. Finally we obtain
the zero-, one- and two-dimensional limits of the three-dimensional theory and compare
the results for the free energy with other treatments. In section 4 the strict one- and two-
dimensional versions of the theory are presented. We conclude with a brief summary of the
results and their implications for DFT. In the appendix we extend the theory to mixtures of
hard spheres.

2. Theory

Since this new DFT relies heavily on the Rosenfeld or KR theories, we begin with a brief
account of these theories. More details can be found in the original papers [10, 11].

2.1. The theories of Rosenfeld and of Kierlik and Rosinberg

In both theories the excess contributigp,[{p;}] to the free-energy functional of a mixture
of hard spheres is postulated to be of the form

BElto) = U - FFullo] = [ dr @iy ()] 2.1)
whereg = 1/KgT, p;(r) is the density of componerit and

pFallo) = Y [ dr pu(rdog Apir) - 1 (2.2)
is the ideal-gas contribution with tha;s being the thermal de Broglie wavelengths of

component. In equation (2.1)8~1® is the excess free-energy density and it is expressed
as a function of a set of weighted densitieggr) which are defined by

ne(r) = Z/pi (r/)a)fa)(r —7) dr'. (2.3)

The main differences between the Rosenfeld and KR theories arise in the functional forms
of ® and the density-independent weight functiwf%’(r).
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2.1.1. The Rosenfeld theoryln the work of Rosenfeld [10] the six weight functions are
characteristic functions for the geometry of a three-dimensional sphere of Rdidhey
are both scalar and vector quantities and are defined as

0®(r) = (R, — 1) @4
0P =R -1 wP@)="8QR —1) (2.5)
,

) (2)

(l) w; (r) @ _ W (r)

()= 47 R, ;= 47 R; (2.6)
(2

(0 w; (r)

i ()= 47 R? @7

wheref ands are, respectively, the Heaviside step and the Dirac delta function. The excess
free-energy densitg—1® is derived [10] as a sum of vector and scalar contributions:

nin ng

1—n3 247(1—ns3)?
ni-ny  na(ng-mno)
by = — — 2.10
v 1—n3 8r(l— ng)? (2.10)
where the dot denotes the scalar product. For a uniform hard-sphere mixture one has
pi(r) = p;, the integrals over the two vector weight functions vanismsge= n, = 0, and
the remaining four scalar functions yield the weighted densities

na =Y piR (2.11)

b5 = —ng |Og(1 —n3) + (29)

where

4
RO =1 R® =R R? = 4n R? R® = éan’. (2.12)
The resulting® = & is the scaled-particle theory or Percus—Yevick excess free-energy
density of the uniform hard-sphere mixture [10]. Note thats simply the packing fraction.
The direct correlation function is given by the second functional derivative of the excess
free-energy functional:

82F .

_ @ _ _
) = spr)

(2.13)

In the uniform limit one has
—c2(r) = x P AV () + x P AS; () + x P AR () + X QO((R + R)) — 1) (2.14)

where @ = 32®5/dn3dn, and AV;;(r), AS;(r), and AR;(r) are functions of the
distancer between two spheres of radiug and R;. These quantities are given by
geometrical measures [10]. Expression (2.14) coincides with the PY direct correlation
function for a three-dimensional hard-sphere mixture [10].

2.1.2. The Kierlik—Rosinberg theoryln the work of Kierlik and Rosinberg [11] the PY
form is postulated for the excess free-energy density:

3

nin n,
® = dpy = —nglog(1l —
PY nolog(1l — n3) + 1—ns | 247(1—na)?

(2.15)
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where again the:,s are averaged densities (2.3) but now with different weight functions
obtained by requiring that in the uniform limit the above functional gives rise to the PY
direct correlation function (2.14). Then KR obtained four scalar weight functions [11]:

0@ (r) =6(Ri —r) (2.16)
0 (r) = 8(R; 1) .17
o) = =8 R — 1) (2.18)
8m
Oy — — L 5" R — e L s(R
w; (r) = 8716 (Ri — 1)+ 27”8 (R; — 1) (2.19)

where the prime denotes differentiation w.r.t. Notice that in the uniform limit thei,s
arising from this theory are identical to those of the Rosenfeld theory.

2.2. Present theory

For the sake of clarity we present the theory for the case of a hard-sphere fluid with only
one component; the extension to mixtures is straightforward and is reported in the appendix.

2.2.1. The functional of the one-component fluith accordance with Rosenfeld and KR
we assume the following expression for the excess part of the free efieryi:

pFLR) - BFulsl = Fulr] = [ ®ip) dr (2.20)
where

Falol = 57 [ dr pr)log A% () ~ 1 (2.21)
is again the free energy of the ideal gas. In the spirit of scaled-particle theory the excess
free-energy density—1® is assumed to be of the form

®(r; p) = DrG(R; 15 p) (2.22)

where G is a dimensionless generating function which depends on the ratias the
particles and whose explicit functional form will be proposed latér; is a differential
operator of ordeD, whereD is the dimension of the systerd(= 1, 2, or 3):

ai

o (2.23)

D
Dg = Z qi(R)
i—1

and theg;(R) are undetermined functions of the radi®s with dimensionR'~?. The
simplest choice for these functionsgigR) = a; R' 7, theq;s being dimensionless constants.
With this choice, we have

D ai

a;
Dp = —. 2.24
R ; RDfi OR! ( )
Our proposal for the generating function is
G=@A-v(r, R)(log(l—v(r,R) -1 (2.25)

wherev is a weighted density:

v(r,R) = /dr’ p(r —ro(r', R) (2.26)
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and w(7/, R) is a density-independent weight function which determines the dependence
on R. Following the Rosenfeld and KR theories and earlier approaches [2] we take the
simplest weight function:

o', R) =0(R—71") (2.27)

so that forD = 3, v(r, R) coincides with the average density(r, R) which appears in
the Rosenfeld and KR theories.

The proposed form o& is motivated by making comparison with the ideal-gas free-
energy density

fualp() = B p(r)(log(A%p (1) — 1). (2.28)
Since in the uniform limitv reduces to the packing fraction = (4/3)7 R%p, which
represents the fraction of volume occupied by the molecules, for the inhomogeneous fluid
1— v can be taken as the fraction of free volume. One then assume€ taata function
of 1 — v is just the free-energy density of the ideal gas. Going further with the analogy,
one could then consider the excess free-energy defisty)xG as being the geometrical
contributions to the free-energy density of afeal ‘interstitial’ fluid with the packing
fraction given by Xv. Other choices of; are possible but we first explore the consequences
of this simple prescription.

The next step is to determine appropriate values for the coefficientgo this end we
follow the usual procedure dimposingthe known homogeneous limit, i.e., we choose the
;S in such a way that fop(r) = p = constant,871® in (2.22) coincides with a known
excess free-energy density. FBr= 3 this can be carried out for the Percus—Yevick excess
free-energy density (the natural choice because of its equivalence to SPT) but also for the
more accurate Carnahan—Starling result [16].

From (2.22)—(2.25) we obtain

® = DG = —<;12v’ + %v” + a3v’”> log(1—v)

az .2 /AN 1 "3 1

— 3a — 2.29
+(R(v>+ 3””>1_v+“3(”)(1_v)2 (2.29)
where the prime denotes differentiation w.Rkt. Equating term by term in (2.29) and in the
Percus—Yevick result (2.15) and taking into account that n3, we obtain the following

set of equations:

a ,  dz , ///

ng = ﬁv + Ev + azv

niny = % ()2 + 3azv'v" (2.30)

% = az(v)°.
Given that in the homogeneous limit we have

ng = gnRSp ny = 4w R%p ny = Rp ng=p (2.31)
and

V= gnR3p Vv = 4r R?p V' =8 Rp V" = 8mp (2.32)
it follows that in that limit (2.30) has the unique solution

a = i a,=0 as - (2.33)

67 = 241"



Density functional theory for hard-sphere fluids 2381

Substitution of (2.33) into (2.29) allows us to write

= Lo ) loga— v+ AL o (2.34)

= \err2” T2ar" )% "V T g a— ) T 2ar@— vy2 '

On the other hand, from equations (2.26) and (2.27), and the definitions (2.3) for the
averaged densities,, and (2.16)—(2.19) for the corresponding weight functieff8 in the
Kierlik—Rosinberg theory, it is easy to establish the following relations:

n3 =yv

ng =v

np= T (2.35)
8

1 = 1 /v
ng=——1v — =
0 8 2 \ R

that allow us to rewrite (2.34) as

nins ng

1 4
®=(-np— — log(1 — .
< o 3Rnl> 0g(1 = n3) + 1—n3 247(1—ns3)?

2 (2.36)

In this functional the only difference fron®”" in (2.15) appears in the first term, this
difference vanishing in the homogeneous limit. The functichdh equation (2.36) is our
proposal for the excess free-energy densityfoe= 3, and unless otherwise stated, it will
be the functional used in the calculations that we present later.

Proceeding in an analogous way we can obtain a functional that yields the Carnahan—
Starling free energy in the homogeneous limit. The starting point is the extension to mixtures
[20] of the C-S expression, written in terms of scaled-particle variables [11]:

o€ " log(1 — nz) + L v, (2.37)
= —_—Fs — n —n nin . .
T A At A e T K G T g g

Note that the coefficient of the first log term vanishes for the uniform fluid. Now, equating
term by term in (2.29) and (2.37), the constamtgake the following values:

7 1 1
__ " S = _— 2.38
“T 71 ®Ter “T3e (2.38)
giving the new functional
® -7 /+ 1 //+ 1 " Ylo (1 )
===V +—v —V -V
18r2" " 6xR’ " 36n g
1 2 i, ., 1 1 ()3
— — — 2.39
+<6nR(”) +127rvv>1—v+36ﬂ(1—v)2 (2:39)
or, in terms of then,s given by (2.35)
o= 1 + 20 2 log(1 )
~ T\ TR T gp™ T g0 T
1, 2 1 n3
< 2.40
+ (671Rn2+ 3”1”2>1—n3 1 367(1 — )2 (2.40)

which, as in the previous case, differs fro@“S in (2.37) but agrees with it in the
homogeneous limit.
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Figure 1. The two-body direct correlation functiorf® () of the homogeneous hard-sphere
fluid; (a) packing fractiom = 0.1 and (b)y = 0.46. The solid lines are the results of our theory
(2.45) and the dashed lines show the PY DCF (2.14).

2.2.2. The direct correlation function.In this section we study the structure of the uniform
fluid as obtained from the above theory, i.e., we shall compare the paird¥GF) with
the PY pair DCF. From definition (2.13) and (2.20)—(2.25) we obtain

@ 1
— ¢ (ry,m2) = Dp mw

For a homogeneous fluid both? and » depend only on;; = |r; — r;|, so the Fourier
transform of (2.41) reads

(r —ry, Rw(r —ry, R) dr.  (2.41)

k, R))?
—C(Z)(k) — DR<(w(’))). (2.42)
1—v
A simple calculation using the;s in (2.33) allows us to write
— @) = xPAV k) + xPASK) + x VAR K) + xV0(k) (2.43)

with
sin(kR)
kR

and where they@s have the same meaning as in equation (2.14Y(k), AS(k), and
AR(k) are the Fourier transforms of the functions appearing in (2.14),68hdR) is the
Fourier transform ob(R — r). Explicit expressions for these functions have been given
elsewhere [11]. Back in real space, from (2.43) and (2.44) we find

2 1 r r 1 1 r
@y =2 S Cel1-—)-—Z——s(1-= 2.45
) CPY(r)+31—nrr ( o) 61—n ( o ( )

G(k) = 0(k, 2R) + 0 (k, R):( — coSkR) — kR sin(kR)) (2.44)

where c(Pz)Y(r) is the PY pair DCF (2.14) for a one-component homogeneous fluid and
o = 2R is the hard-sphere diameter. The most remarkable (and unphysical) feature of
c@(r) in (2.45) is the presence of a Diradunction atr = o. Figure 1 shows a comparison
between the PY pair DCF and the result (2.45) for two different densities. The agreement
between the results of the two theories is fairly good, especially at high densities. Notice
that @ (r) in (2.45) coincides withe'?) (r) for » = 0. This is related to the fact that the

two theories give rise to the same equation of state in the homogeneous limit—see (3.18)
and the discussion that follows.
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Figure 2. The structure factoS(k) of a homogeneous hard-sphere fluid; (a) packing fraction
n = 0.1 and (b)n = 0.46. The solid lines are the results of our theory and the dashed lines
show the PY structure factor.

Figure 2 exhibits the structure factsik) = 1/(1 — pc®(k)) for both theories and
the same two densities. As can be observed, a dephasing occurs, and the first peak is not
adequately described for the higher density in the present theory. This failing is due to the
large contribution from the second term in (2.44), reflecting the unphysical delta function.
Note thatc® (k = 0) and S(k = 0) coincide for the two theories, since they have the same
compressibility equation of state.

3. Applications

3.1. Adsorption at a wall

This is a prototypical problem for examining the performance of any theory of
inhomogeneous fluids. We investigate first the structure (density profile) of a one-component
hard-sphere fluid in contact with a hard wall. In this case the external potential is given by

00 z<0

3.1
0 z>0. (3.1)

Vext (T) = ext(z) = {
The minimization of the grand potential

Qlp] = Flo] + f de p(@)[Vors(2) — 1]
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gives rise to the following expression for the density profile:

p(z) = { 83 eXp[C(l)(Z) - C(()l)('OB)] z>0 (3.2)
z<0

where pp is the bulk density (the density of the fluid far away from the wall})(z) is
the first functional derivative of the excess free energy, e{ﬁdis its homogeneous limit
(p(z) — pg). For our particular functional

V) = ;;(-:) = /Z 0@ (' —7r) dr’ (3.3)

where @ is given by (2.36) and the weights® come from the KR theory (2.16)—(2.19)
restricted to a one-component fluid. By definisg(z) = [ ®,0@ @' — r) dr’, with
®, = 0d/dn,, we have

V@ == 5@ (3.4)

where theS,s can be rewritten in the following simplified form:

R
Sa(z) = 7 / ®3(z + 2)[R? — 7] d2’
—R

R
So(z) = 27rR/ Oy(z +7) d7’
R (3.5)

R 1 K ’ !
R @1z + R) + D1z — R) + 7/ ®y(z + ) dz

$1(z) = 7

1
So(z) = *(q>o(z + R) + ®o(z — R)) — *(‘D (z+ R) — dy(z — R))

and the weighted densities can be written as in KR theory [11]. Thectgf(rpg) is easily
expressed as

co (p) ==Y ®a({ng = psRPHR (3.6)

whereR@ =1, R® = R, R® =47 R?, andR® = (4/3)7 R®.

Equation (3.2) for the profile(z) is readily solved by iteration. Figure 3 shows a
comparison between the solution of equation (3.2) and the result of the KR theory (equivalent
to that of Rosenfeld) which is known to give very accurate results for the present problem
[11, 2]. The solutions are plotted for different bulk densities, and are in better agreement
as the density decreases. The most striking feature of the solutions obtained from the new
theory is the appearance ofkink at z = o (and discontinuities in higher derivatives at
z = 20, 30, ...) which can be traced back to the delta function term in the DCF (2.45).
The delta function contributiopropagateshe discontinuity in the profile at=0toz = o
in the form of a discontinuity in the first derivative @f(z) (the kink). Although this
unphysical kink is the main difference between the theories, there is also some dephasing
of the maxima.

It should be mentioned that the present theory obeys the contact sum rule for a fluid
near a hard wall:

BP = p(contac. (3.7)

This sum rule is satisfied by any (non-local) DFT. In this case (as in the Rosenfeld or KR
theories) the bulk pressur is that given from the compressibility PY equation of state.
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Figure 3. Density profiles for a hard-sphere fluid near a planar hard wall; (a) bulk packing
fraction np = 0.05, (b) np = 0.15, (c)np = 0.30, and (d)np = 0.46. The solid lines are the
results of our theory and the dashed lines are those of the KR theory.
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Plpg

20 ‘

r (b)
plpg

Figure 4. Density profiles of hard spheres near a Lennard—Jones 9-3 wallz(&) 0.244,

€/kp = 2876 K,zo = 0.5627, T = 150 K, and (b)yp = 0.32, ¢/kp = 2876 K, z0 = 0.562,

T = 100 K. The points are the Monte Carlo results of reference [21], the solid lines are the
results of the present theory, and the dashed lines are those of the KR theory [11].

Kierlik and Rosinberg [11] applied their approach to the very inhomogeneous case of a
hard-sphere fluid near a Lennard-Jones wall with the potential given by

Vext (2) = 6((?)9 - (?)3) (3.8)
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Figure 4 shows a comparison between Monte Carlo and KR results, and the results of the
present theory for two different bulk states. In general the KR theory is accurate except
in case (b), a high-density, low-temperature state where it cannot reproduce adequately the
extremely high first peak of the profile. The new theory gives results similar to those
of KR but with poorer agreement with simulations which again can be related to the
delta function term in the DCF (2.45). In this case the wall potential is soft, there is
no discontinuity at contact, and the kink is smoothed. Notice that the kink appears at a
distance of approximately from the main peak. Once again there seems to be significant
dephasing of the maxima.

3.2. The radial distribution functiog(r) of a homogeneous hard-sphere fluid from the test
particle method

The test particle method is based on an idea of Percus [22] which allows one to study the
structure of the homogeneous fluid using theories for inhomogeneous liquids. The idea is
to consider one of the particles as fixed at the origin, thereby creating an inhomogeneity in
the one-body density profile. The resulting density pragfi(e) is then related to the radial
distribution functiong(r) of the homogeneous fluid by the following relation:

p(r) = ppg(r). (3.9)

From this viewpoint we consider a fluid in an external potential equal to the intermolecular
potential (created by the particle at the origin). For hard spheres this potential is given by

00 r < 2R
Vext (1) = Vi (r) = { (310)

0 r > 2R.
Since this potential has spherical symmetry, the resulting density profile will also have
spherical symmetry. In this case, the convolutions defining the weighted densities (and those
convolutions appearing in®(r)) can be easily handled by Fourier transform methods by
noticing that all of the Fourier transforms (FT) involved can be reduced to one-dimensional
FTs on the radial coordinate The calculations can then be done using a fast-Fourier-
transform (FFT) procedure. This method can also be implemented in the previous case of
adsorption at a wall.

Figure 5 shows a comparison between the results obtained from KR theory (or
equivalently, from the Rosenfeld theory) and from the present theory for several bulk
densities. In general, the behaviour is similar to that found in the case of adsorption at
a wall. g(r) is characterized by the appearance of a kinkifet 20 (and discontinuities
in higher derivatives for = 30, 40, .. .), i.e., at a distance from the contact. This kink
is enhanced as the density is increased and can be traced back to the delta function term in
the DCF.

The reason for comparing with the KR theory is that we know that this provides accurate
results for the radial distribution function. This can be ascertained in figure 6 where we plot
our results forg(r) for n = 0.46 from KR theory using the test particle method and the PY
result obtained as usual from the PY pair DCF through the Ornstein—Zernike equation. Since
the PY pair DCF is also the KR DCF, figure 6 illustrates the great degree of consistency of
the KR theory. The main differences between the results from the test particle method and
the inversion of the Ornstein—Zernike equation appear at or close to the contact, where the
test particle result is closer to the simulation result.

As in the wall-particle problem, in the test particle case there is an exact sum rule
linking the contact value of the profile(c) with the equation of state of the hard-sphere
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Figure 5. Pair correlation functiong(r) of the homogeneous hard-sphere fluid obtained from
the test particle method; (a) bulk packing fractipp = 0.1, (b) ng = 0.2, (c) np = 0.3, and

(d) np = 0.46. The solid lines are the predictions of the present theory and the dashed lines are
those of the KR theory.
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a(r)

rlo

Figure 6. The pair correlation functiog(r) for the homogeneous hard-sphere fluid at a packing
fractionnpg = 0.46. The solid line is the result of the KR theory obtained using the test particle
method. The dashed line is the RYr).

fluid. This is the virial equation of state [16]:

FP _ 1+ gnpog’g(o). (3.12)
P

However, for this problem our theory yields contact values different from the KR theory
(see figure 5). This observation is related to the fact that the DCFs of the two theories are
different. Nevertheless, as can be seen in figure 7, the contact values obtained in our theory,
when used in equation (3.11), give rise to pressute@quations of state) in remarkable
agreement with the corresponding homogeneous fluid equations of state. More precisely,
in figure 7 we compare the test particle results from our theory uginfjom equation

(2.36) ) with the PY compressibility equation of state (solid line) and find that these
are very close. We also compare the test particle results from our theorybwitbrived

from the Carnahan-Starling free energy (2.4¢) (vith the accurate Carnahan—Starling
equation of state (dashed line). Again these are very close. In this context we mention that
replacement ofb from equation (2.36) (coming from PY theory) kdyfrom equation (2.40)
(coming from Carnahan-Starling theory) gives rise to density profi(es or g(r) that are
almost identical except for the values near the contact which are much more accurate in the
Carnahan-Starling case.

3.3. Very inhomogeneous situations

In this subsection we consider the zero-, one-, and two-dimensional limits of the three-
dimensional theory. If a theory based on a full three-dimensional functional can provide
an accurate account of results for lower dimensions, it should, in principle, be able to deal
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Figure 7. The equation of state for a hard-sphere fluid plotted as a function of packing fraction
ng. The solid line is the PY compressibility equation of state, the dashed line is the Carnahan—
Starling equation of state): the results of this theory (using the test particle method and the
virial equation (3.11)) in the PY version, arg this theory in the Carnahan—Starling version.

with highly inhomogeneous situations in which the effective dimension of the problem is
reduced. For example, if we consider adsorption at very attractive walls, the first layer of
molecules behaves as a near-two-dimensional fluid.

3.3.1. The zero-dimensional limitin a recent paper [17] Rosenfe&t al have proposed

a modified geometrically based free-energy functional for hard spheres. In that work the
authors analyse a situation of extreme confinement in which one considers cavities that
cannot hold more than one particle. This is the 0D limit. The modified free-energy
functional is constructed in such a way that it recovers the exact excess free energy for
this situation. This is given by [17]

BFex(m) =1+ (1 —n)log(l—n) (3.12)

where the 0D packing fractiomrepresents the average occupation of the cavitg (p< 1).

We note that the exact 0D excess free energy (3.12) is essentially our generating function
G (see (2.25)) expressed in terms of the average occupationMore specifically,
BF..(n) = G(n) + 1. Thus, one might argue that our present theory is constructed so
that the exact OD limit is achieved. This was not how we came to our approximation,
however; rather it was motivated by the simple free-volume ideas described earlier. As
such, our approach is in a somewhat different spirit from the very recent work of Tarazona
and Rosenfeld [23], which presents an elegant derivation of fundamental-measure-theory
functionals based on the exact 0D free energy. Note that the original Rosenfeld theory does
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not recover the correct 0D limit; rather it leads to a divergence. As we shall see below, a
remarkable property of our theory is that it yields the above exact 0D excess free energy
when we consider the (PY-fitted) functional (2.29) with coefficients (2.33).

The density in the OD limit iso(r) = nd(r), and therefore

v(r) = n/cS(r’)@(R —|r—7]) dr' = n0(R — |r|). (3.13)
From (2.20) and (2.22) one has
BFex = Dr / G(v) dr (3.14)

and then, using (3.13), one can divigeG(v) dr into two parts, one inside the sphere
r = R for which G(v) = G(n) = constant and the other outside this sphere for which
G(v) = G(0) = —1. Sincen (the average occupation) is independenikoin OD we find

BFex(n) = Dr((=1)(V — V3(R)) + G(n) V3(R)) = (1 + G(1)) Dr(V3(R)) (3.19)

whereV is the volume of the systenV(= [ dr) and V3(R) = (4/3)x R® is the volume of
a sphere of radiu®. From (2.25), equation (3.15) is the exact result (3.12) provided that

Dr(V3(R)) = 1. (3.16)
Considering the general expression @ (2.24), condition (3.16) requires that
A (a1 + 2ap + 2a3) = 1 (317)

and this is fulfilled by the set (2.33), i.e. the set which in the homogeneous limit recovers
the PY free energy from our functional. Surprisingly, using the set (2.38) that gives the
Carnahan-Starling version of our theory we obtBip(V3(R)) = 0, i.e. we do not recover

the correct OD limit. This indicates that our theory is intimately linked to the PY (or SPT)
structure. This feature is also present if one considers the following relation:

—cP(r = 0) + pc? (k = 0) = Dg(V3(R)) (3.18)

which is valid for the homogeneous fluid DCF in the framework of our theory. It can
be derived by recognizing that equation (2.42) yields?c® (k = 0) = Dxr(n?/(1 — n)
(note thatn/p = (4/3)7 R®) and equation (2.41) implies pc®(r = 0) = Dr(n/(1 —1)).
Expression (3.18) reduces toc®(r = 0) + pc®(k = 0) = 1 for the PY version of
our theory. This last result is a well-known requirement on the PY pair DCF; it is easily
obtained from the Ornstein—Zernike relation, noting #&ir) = 0 for» > o andg(r) = 0
forr <o.

It is important to note that (3.18) generalizes to other dimensi@nsThe derivation
sketched above yields, for &b,

@ = 0) + pc@(k = 0) = DR(Z) (3.19)

where n is the appropriate packing fraction ard is the operator appropriate to the
particular dimensiorD. In section 4 we show that the r.h.s. of (3.19) reduces to unity for
D =1andD = 2 as well as forD = 3.
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3.3.2. The one-dimensional limitin this case the particles are restricted to the line
(x = y = 0) and the density profile can be written as

p(r) = p-(2)8(x)8(y) (3.20)

and thus
7+l
v(r) = /pz(z/)S(X’)S(y’)H(R —|r—7)dr'=60(R— Q)/ po(z)) dz’ (3.21)
z—l

where 02 = x2 + y? and > = R? — 0% In order to derive the corresponding excess
free energy we use again equation (3.14). The integral in (3.14) can be evaluated taking
into account the cylindrical symmetry of(r) and the fact that fop > R, v = 0 and

Gv =0 =-1. We find

R
/G(v) dr = 271/dz/ G(v)o do +wLR?> -V (3.22)
0

where againV is the volume of the system ardis its length { = [ dz).

01y s

10 +
B
Lp,

Figure 8. The excess free energy of a uniform one-dimensional hard-rod fluid. The solid line
is obtained from the one-dimensional limit of the present three-dimensional functional. The
dashed line corresponds to the exact solution. In the inset we show the results for low densities.
n is the 1D packing fraction.

Using the PY coefficients (2.33) it follows that

1 9 1 38

_ 9 L 3.23
6xRZOR | 247 OR3 (3.23)

Dpg
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and from (3.14) and (3.22) we obtain

L 1 _ 1 _
BFe= oo+ o / G de - /(pz<z +R)+ p:(c — R))log(1 - 7) d
- Tzf(p;(z + R) — p.(z — R))log(1 —7) dz
_ 2
/ (pz(Z + R) + fiz(z R)) (324)
12 -V
where
Z+R
@) = v =0y =07)= / p() o' (3.25)
z—R
For a uniform fluid the density is constan;(z) = p, = N/L andv(z) = 2Rp,, giving
IBFe,\ (:0 ) 2 R,Oz
T —log(1 —2Rp,) + 3Rp. log(1 — 2Rp,) + + m (3.26)

The first term in the above equation is the exact free energy for the homogeneous hard-rod
fluid [19]. The remaining terms constitute, therefore, deviations of the present approximation
from the exact result. In general, up to a packing fraction ef 2Rp, ~ 0.8, the deviations

are small (see figure 8). The theory does not predict the correct second virial coefficient
as can be deduced from (3.26) (or see the inset in figure 8). Moreover the free energy
diverges faster af = 1 than the exact result. We stress, however, that we are dealing with
a highly inhomogeneous problem for which very versatile theories such as the weighted-
density approximation of Tarazona [8] and of Rosenfeld [13] fail. For example, in the
original Rosenfeld theory there are non-integrable singularities in the calculation of the 1D
free energy [13, 24]. The modified version of Rosenfe@l [17] removes the singularities

and yields free energies which are of a similar accuracy to those obtained from our present
theory.

3.3.3. The two-dimensional limit.Now the particles are restricted to the plane- 0 and
the density is given by
p(r) = p2(x, y)8(2). (3.27)

Proceeding in the same manner as in the previous case we obtain in the uniform limit
(p2(x, y) = p2 = N/A) the following expression for the free energy:

BFex 2 1/1 s n lfl d¢ 1/1 d¢
=—_| - = I dc + - + = e -
Ap, = 309N T g ) lg@ VA F o | a2 T3] Wit
(3.28)
whereA = [dx dy, the two-dimensional packing fraction is= 02 R%, ¢ = z/R, and

a = ((1 —n)/n)Y2. This result should be compared with the two-dimensional limit of the
KR or Rosenfeld theory [24, 13]:

BFEE 1 /1 d¢ 1 /1 dg
ex oo 1 = : 3.29
Aps 77+2 71a2+§2+3 1 (@2+¢2)?2 ( )
and with the accurate result of the scaled-particle theory (SPTpfer2 [15]:
SPT
Pre” _ 1 loga—n). (3.30)
Ap2 1-n

Figure 9 shows the three cases. Our result is very close to that of KR except for at low
densities (see the inset) where KR theory is in better agreement with SPT.
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n

Figure 9. The excess free energy of a uniform two-dimensional hard-disk fluid. The solid line

is obtained from the two-dimensional limit of the present three-dimensional functional. The
dashed line corresponds to the same limit of the Rosenfeld (or KR) theory. The dotted line
represents theear exactSPT result [15]. In the inset we show the results for low densities.

is the 2D packing fraction.

4. Theory in dimensions one and two

In this section we derive the one- and two-dimensional versions of the present theory,
following the procedure employed for the three-dimensional case.

4.1. Dimension one

For D = 1 the weighting function iso(r) = (R — |r|) where|r| is the absolute value of
the one-dimensional variableand Dz = a; d/dR. Then

® = —ayv’'log(l—v) (4.2)
which in the uniform limit takes the value
® = —2a;1plog(l —n) (4.2)

where nowny = 2Rp is the one-dimensional packing fraction. Equating with the exact result
et — _ 5 log(1l — n) we obtaina; = 1/2, which inserted in (4.1) gives rise to

r+R

—R

BFer = —% /(,o(r +R)+ p(r — R)) |Og<1 — / o) dr’) dr (4.3)

and this is the exact free-energy functional for the one-dimensional inhomogeneous hard-
rod fluid [2, 19]. Note that forD = 1, Dr(n/p) = 2a; = 1, so (3.19) reduces to
—c@@r =0) + pc@®(k = 0) = 1. This relation is exact foP = 1.
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4.2. Dimension two

Applying the two-dimensional version dbg:

a; 0 02
DR = iaiR +a2ﬁ (44)
to G = (1 —v)(log(1 — v) — 1) we obtain
/ N2
b = — av —+ agv” IOg(l — U) + ar (V) . (45)
R 1—v
In the uniform limit (4.5) reads
27 Rp)?
& = —2mp(a1 + ay) log(l —n) + az% (4.6)

wheren = wR?p is the two-dimensional packing fraction. Equating (4.6) with the SPT
free-energy density for two dimensions (3.30), re-expressed as

RZ
SPT = 25— plog(l— n) (4.7)
1-7
we obtaina; = a, = 1/4x. The functional (4.5) can then be expressed in the form
1 2
® = —nplog(l —ny) + — (1) (4.8)
A7 1 —ny
wheren;(r) = [ dr’ o (lr — r'|)p(r') and we have defined the weight$’ as
0@ (@) =O(R —r)
Dy — _
o’ (r)=8(R—r) (4.9)

0 @) = 1 (18(R —r)+8R- r)).
47 \ R
The two-dimensional functional (4.8) with the scalar weight functions (4.9) can be viewed
as the two-dimensional version of the KR theory. Note however that there is only one
weight function (2.27)—the structure of thi3 = 2 theory is the same as f@ = 3—and
thew® (4.9) are simply derivatives of this one. This is somewhat different from the genesis
of the weight functions in Rosenfeld’s theory.
Nevertheless we now show tha& given by (4.8) is completely equivalent to the

Rosenfeld functional in two dimensions [12, 13]:

. 1 a2 1 fy-h

b = —iologL —iz) + ,_ 1 ﬁlﬁz - 71”_ :21 (4.10)

where then;s are again given byi;(r) = [dr’ & (r — r")p(r') with the D = 2 set of
weights

o) =0R —7r)

o) =|VOR—-r)|=8(R—r)

o) = —VOR—r) = _8(R —r) (4.11)
r

1 1
A0 (1) A 0y _
o (r) = Zan (r) R(S(R r).
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The demonstration of the equivalence of the two theories is very similar to the one used
by Phanet al [18] to establish the equivalence of the KR and Rosenfeld theories in three
dimensions. Let us consider the difference

~ 1 nq-n
/dr (& — o) = /dr — (g — no) log(L — ng) — — A7 ™ (4.12)
A 1 —ny
in which the identitiesi; = n, andn,; = n, have been applied. Also, sinégg, = —Vn;
one has
ng-ny . .
/d'r’ 1 = /dr ni - Viogl —ny) = — f dr V - njlog(l—ny) (4.13)
—ny

where we have performed an integration by parts, neglecting the surface terms. We get
therefore

/d’l“ (&) —d) = /d’l” (—(flo —no) + %V . TAL1> Iog(l — no). (4.14)

This expression vanishes provided thaiig — ng) + (1/47)V -y = 0, and this can be
verified by noticing that

@
— (69 — O + %V NG (_“’ o V. (;J(l))
T

4 R
1 8(R—r)
- (_R
where? = r/r and equations (4.9) and (4.11) have been used. Recallingthat= 1/r
for D = 2, it is straightforward to see that this expression vanishes on integration. Finally

we note that forD = 2, Dg(n/p) = 2n(a1 + a2) = 1 and, once more, equation (3.19)
reduces to-c?(r = 0) + pc®(*k =0) = 1.

TS8R -1+ V78R —1)+ 7+ VSR — r)) (4.15)

5. Conclusions

We have proposed a new density functional for the inhomogeneous hard-sphere fluid which
is close in spirit to the theories of Rosenfeld [10] and of Kierlik and Rosinberg [11] but
which employs a simplansatz(2.22) for the excess free-energy density. The assumption

is that the latter can be written as a set of derivatives of a generating fur@tiom.t. the
particle radiusR. Our choice ofG was motivated by simple free-volume considerations
and involves a single weighted densityr, R). In contrast to the Rosenfeld and KR
theories whose structure is, in some sense, predetermined by that of PY theory or SPT for
the hard-sphere system, our approach builds in some flexibility. It is designed so that the
coefficients of the differential operator can be fitted to different uniform fluid free-energy
densities. The results presented here are obtained by fitting to the PY free energy, in order to
effect a fair comparison with the Rosenfeld and KR theories. The application of our theory
with coefficients determined by the Carnahan-Starling free energy (see (2.40) and above)
gives rise to almost identical results for density profiles andgfien but with significant
improvement near the contact.

In applications to three-dimensional problems (density profiles at walls or the calculation
of g(r) from the test particle procedure) our new functional is generally less accurate than the
Rosenfeld or KR functionals. However, it does fare somewhat better than other functionals
based on a single density-independent weight function, which suggests that the generating
procedure does contain some of the essential physics. We have traced the failings of our
theory to the fact that it does not generate an adequate pair DCF for the uniform fluid.
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There is an unphysical delta function termrat o which is responsible for the appearance

of a kink atz = o in the density profile at a hard wall and a similar kink gitr) at

r = 20. These kinks are not present in the results of more sophisticated approximations
or in simulations. Such observations reinforce the conjecture [2] that for a DFT to give an

accurate description of the density profile of the inhomogeneous fluid it should generate an
accurate pair DCF in the uniform case.

The main strength of our present theory lies in its ability to describe successfully limiting
cases of extreme inhomogeneity. The three-dimensional functional yields equations of state
for one- and two-dimensional systems that are comparable in accuracy to those from the
latest modification [17] of Rosenfeld’s fundamental-measure theory. Given that it also yields
the exact OD limit (a demanding test [17]) this suggests that the present functional could
find useful applications in problems of extreme confinement. These are currently under
investigation.

At the risk of losing the overall simplicity of the theory, modifications could be made
by introducing other generating functions, i.e. modifying the ideal-gas form in (2.25). It
remains to be seen what the consequences of such modifications will be and whether these
will lead to improved pair DCFs and density profiles for= 3.
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Appendix

In this appendix we extend the theory formulated in section 2 for a one-component fluid to
the general case of fluid mixtures. We assume an excess free-energy gerdityf the
form

@(r; {pi}) = DrG(7; {pi, Ri}) (A.1)

wherep; andR; are, respectively, the density and the radius of componehthe mixture.
Also, for dimensionD = 3, we define

109 1 9 a 0 il 0
DR:klZFET&+k2 i RlaRl<ZaRl>+k3ZaRl<ZaRl<ZaRk))

i J J k

(A.2)
and
G =1 —v(r;{pi, RiH)(log(L — v(r; {p:, R;})) — 1) (A.3)
wherev is a weighted density
v(r; {pi, Ri}) = Z/p(r — o, R;) dr’ (A.4)
and

w('r’, R,‘) = Q(R,‘ — r'). (A5)
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Performing the differentiation indicated in the above equations and comparing term by term
with the PY functional in the homogeneous fluid limit, we find

_ 1! ko =0 ks = -
" 6 2= 37 24n

which coincides with the result for the one-component fluid.

k1 (A.6)
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